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varies from a to a + w1. It is consequently an integer. The same applies 
to the other pair of opposite sides. Therefore the value of (8) is of the 
form n 1w1 + n2w2, and the them·em is proved. 

3. THE WEIERSTRASS THEORY 

The simplest elliptic functions are of order 2, and such functions have 
either a double pole with residue zero, or two simple poles with opposite 
residues. We shall follow the classical example of Weierstrass, who chose 
a function with a double pole as the starting point of a systematic theory. 

3.1. The Weierstrass rf'-function. We may as well place the pole at 
the origin, and since multiplication with a constant factor is clearly 
irrelevant, we may require that the singular part is .z-2• Iff is elliptic and 
has only this singularity at the origin and its congruent points, it is easy 
to see that f must be an even function. Indeed, f(z) - f( -z) has the 
same periods and no singularity. Therefore it must reduce to a constant, 
and on setting z = wi/2 we conclude that the constant is zero. 

A constant can be added at will, and we can therefore choose the 
constant term in the Laurent development about the origin to be zero. 
With this additional normalization f(z) is uniquely determined, and it is 
traditionally denoted by a special typographical symbol f{r'(z). The 
Laurent development has the form 

f{r'(z) = z-2 + a1z2 + a2z4 + 
So far all this is hypothetical, for we have not yet shown the existence 

of an elliptic function with this development. We shall follow the usual 
procedure in such cases, namely to postulate the existence and derive an 
explicit expression. The clue is to develop in partial fractions by the 
method in Chap. 5, Sec. 2. Our aim is to prove the formula 

(9) 

where the sum ranges over all w = n 1w1 + n 2w2 except 0. Observe that 
(z - w)-2 is the singular part at w, and that we have subtracted w-2 in 
order to produce convergence. 

Our first task is to verify that the series converges. If [wl > 2[z[, 
say, an immediate estimate gives 

l 
1 _ _!_I = I z(2w - z) I < lO[zl. 

(z - w)2 w2 w2(z - w)2 = [w[a 
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'l'herefore the series (9) converges, uniformly on every compact set, pro-
vided that 

< oo. 
wr'O 

This is indeed the case. Because w2/ WI is nonreal, there exists a k > 0 
such that \niWI + n2w2\ k(\ni\ + \n2\) for all real pairs (ni,n2). If we 
consider only integers there are 4n pairs (ni,n2) with \ni\ + \n2\ = n. 
This gives 

00 L \wJ-3 4k-a L n-2 < oo. 
wr'O 1 

The next step is to prove that the right-hand side of (9) has periods 
w1 and w2. Direct verification is relatively cumbersome. Instead we 
write, temporarily, 

(10) 

and obtain by termwise differentiation 

f'(z) = - - \' 2 = -2 \' . 1 . 
z3 L (z - w) 3 L (z - w) 3 

w 

The last sum is obviously doubly periodic. Therefore f(z + wi) - f(z) 
and f(z + w2) - f(z) are constants. Because f(z) is even (as seen from 
(10)), it suffices to choose z = -wr/2 and z = -w2/2 to conclude that the 
constants are zero. We have thus proved that f has the asserted periods. 

It follows now that &J(z) - f(z) is a constant, and by the form of the 
development at the origin the constant is zero. We have thereby 
proved the existence of &J(z), and also that it can be represented by the 
series (9). For convenient reference we display the important formula 

(11) &J'(z) = -2 \' --· L (z - w) 3 

"' 

3.2. The Functions t(z) and u(z). Because &J(z) has zero residues, it 
is the derivative of a single-valued function. It is traditional to denote 
the antiderivative of &J(z) by - s(z), and to normalize it so that it is odd. 
By use of (9) we are led to the explicit expression 

(l2) 1 l ( 1 1 z) s(z) = - + -- + - + - . z z- w w w2 
wr'O 
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The convergence is obvious, for apart from the term 1/z we obtain the new 
series by integration from 0 to z along any path that does not pass through 
the poles. 

It is clear that s(z) satisfies conditions s(z + w1) = s(z) + 711, 
s(z + w2) = s(z) + 112, where 711 and 112 are constants. They are con-
nected with w1, w2 by a very simple relation. To derive it we choose any 
a 0 and observe that 

1 
2----: I S(z) dz = 1, 

}iJPa 

by the residue theorem. The integral is easy to evaluate by adding the 
contributions from opposite sides of the parallelogram, and we obtain 
the equation 

711W2 - 712W1 = 2 1ri, 
known as Legendre's relation. 

The integration can be carried one step further provided that we use 
an exponential to eliminate the multiple-valuedness. Just as easily we 
can verify directly that the product 

(13) u(z) = z n (1 - ezlw+!(z/w)' 
w>"O 

converges and represents an entire function which satisfies 
u'(z)/u(z) = s(z). 

The formula (13) is a canonical product representation of u(z). 
How does u(z) change when z is replaced by z + w1 or z + w2? From 

u'(z + w1) _ u'(z) + 
u(z + w1) - u(z) 711 

it follows at once that 

with constant C 1. To determine the constant we observe that u(z) is an 
odd function. On setting z = -w!/2 the value of C1 can be determined, 
and we find that u(z) satisfies 
(14) u(z + w1) 

u(z + w2) 

EXERCISES 

1. Show that any even elliptic function with periods w1, w2 can be 
expressed in the form 

(C = const.) 
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provided that 0 is neither a zero nor a pole. What is the corresponding 
form if the function either vanishes or becomes infinite at the origin? 

2. Show that any elliptic function with periods w1, w2can be written as 

C ll u(z - ak) 
u(z - bk) 

k=l 

Hint: Use (14) and Theorem 6. 

(C = const.). 

3.3. The Differential Equation. By use of formula (12) it is easy to 
derive the Laurent expansion of s(z) about the origin, and differentiation 
will then yield the corresponding expansion of &J(z). We have first 

1 1 z 
z - w + -;;; + w2 = - w3 - w4 -

and when we sum over all periods we obtain 

s(z) = - I Gkz2k-1 
k=2 

where we have written 

Observe that the corresponding sums of odd powers of the periods are 
zero, as was to be expected since s is an odd function. Because 

&J(z) = -r'(z) 
we obtain further 

In the following computation we write down only the significant 
terms, since it is understood that the omitted terms are of higher order: 
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The last three lines yield 
&J'(z) 2 - 4&9(z) 3 + 60G2&9(z) = -140G3 + · · · 

Here the left-hand side is a doubly periodic function, and the right-hand 
side has no poles. We may therefore conclude that 

&J'(z) 2 = 4&J(z) 3 - 60G2&9(z) - 140G3• 

It is customary to set g2 = 60G2, ga = 140Ga so that the equation becomes 

(15) 

This is a first-order differential equation for w = &J(z). It can be 
solved explicitly, namely, by the formula 

j w dw 
z = V +constant, 

4w3 - g2w- ga 

which shows that &J(z) is the inverse of an elliptic integral. More 
accurately, this connection is expressed by the identity 

z- zo = 
dw 

li'(zo) V 4w3 - g2w - Ua 

where the path of integration is the image under &J of a path from z0 to z 
that avoids the zeros and poles of &J'(z), and where the sign of the square 
root must be chosen so that it actually equals &O'(z). 

We recall that we encountered the relationship between elliptic 
functions and elliptic integrals already in connection with the conformal 
mapping of rectangles and certain triangles (Chap. 6, Sec. 2). 

*EXERCISES 

The Weierstrass functions satisfy numerous identities which are best 
dealt with in an exercise section. They can be proved either by compar-
ing two elliptic functions with the same zeros and poles (when u-functions 
are involved), or by comparing elliptic functions with the same singular 
parts (when only &9- and s-functions are involved). The following 
sequence of formulas is so arranged that we need to resort to this method 
only once. 

1. 

(16) &J(z) - &J(u) = u(z - u)u(z + u) 
u(z) 2u(u) 2 

(Use (14) to show that the right-hand member is a periodic function 
of z. Find the multiplicative constant by comparing the Laurent 
developments.) 

Gil Bor



(17) 

(18) 
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2. 
g;J' (z) 

g;J(z) _ g;J(u) = t(z - u) + t(z + u) - 2t(z). 

(Follows from (16) by taking logarithmic derivatives.) 
3. 

1 g;J'(z) - g;J'(u) 
t(z + u) = t(z) + t(u) + 2 g;J(z) _ g;J(u) · 

(This is a symmetrized version of (17).) 
4. The addition theorem for the g;J-function: 

1 (g;J'(z) - g;J'(u))2 (19) g;J(z + u) = -g;J(z) - g;J(u) + 4 g;J(z) _ g;J(u) · 

(Differentiation of (18) leads to a formula which contains g;J"(z). I\ 
can be eliminated by (15) which gives g;J" = 6g;J 2 - -kgz. Symmetriza-
tion yields (19). Observe that this is an algebraic addition theorem, for 
g;J'(z) and g;J'(u) can be expressed algebraically through g;J(z) and g;J(u).) 

5. Prove 

1 (g;J" (z))z g;J(2z) = 4 g;J'(z) - 2g;J(z). 

6. Prove g;J'(z) = -u(2z)/u(z) 4• 

7. Prove that 
g;J (z) 
g;J(u) 

g;J(u + z) 

g;J'(z) 1 
g;J'(u) 1 = 0. 

-g;J'(u + z) 1 

3.4. The Modular Function t..(r). The differential equation (15) can 
also be written as 

(20) g;J'(z) 2 = 4(g;J(z) - e1) (g;J(z) - ez) (g;J(z) - e3), 

where e1, e2, e3 are the roots of the polynomial 4w3 - g2w - g3• 
To find the values of the ek we determine the zeros of g;J'(z). The 

symmetry and periodicity of g;J(z) imply g;J(w1 - z) = g;J(z). Hence 
g;J'(w1- z) = -g;J'(z), from which it follows that g;J'(wt/2) = 0. Simi-
larly g;J'(wz/2) = 0, and also g;J'((w1 + w2)/2) = 0. The numbers wl/2, 
wz/2 and (w1 + wz) /2 are mutually incongruent modulo the periods. 
Therefore they are precisely the three zeros of g;J', which is of order 3, and 
all the zeros are simple. When we compare with (20) it follows that we 
can set 

(21) 

Gil Bor

Gil Bor

Gil Bor

Gil Bor

Gil Bor

Gil Bor


